연구정보
[IT] Prediction of crop yield in India using machine learning and hybrid deep learning models
인도 국외연구자료 연구보고서 Acta Geophysics 발간일 : 2024-03-19 등록일 : 2024-03-27 원문링크
자료이용안내
국내외 주요 기관에서 발표하는 자료들을 수집하여 제공하고 있습니다. 수록 자료의 자세한 내용은 해당 기관으로 문의하시기 바랍니다.
Crop yield prediction is one of the burgeoning research areas in the agriculture domain. The crop yield forecasting models are developed to enhance productivity with improved decision-making strategies. The highly efficient crop yield forecasting model assists farmers in determining when, what and how much to plant on their cultivable land. The main objective of the proposed research work is to build a high efficacious crop yield prediction model based on the data available for the period of 21 years from 1997 to 2017 using machine learning and hybrid deep learning approaches. Two prediction models have been proposed in this research work to predict the crop yield accurately. The first model is a machine learning-based model which uses the CatBoost regression model and its hyperparameters are tuned which improves the performance of the yield prediction using the Optuna framework. The second model is the hybrid deep learning model which uses spatio-temporal attention-based convolutional neural network (STACNN) for extracting the features and the bidirectional long short-term memory (BiLSTM) model for predicting the crop yield effectively. The proposed models are evaluated using the error metrics and compared with the latest contemporary models. From the evaluation results, it is shown that the proposed models significantly outperform all other existing models and CatBoost regression model slightly performs better than the STACNN-BiLSTM model, with the R-squared value of 0.99.
본 페이지에 등재된 자료는 운영기관(KIEP) 및 EMERiCs의 공식적인 입장을 대변하고 있지 않습니다.
이전글 | 이전글이 존재하지 않습니다. | |
---|---|---|
다음글 | [환경] Sustainable Organic Farming Crops in Nepal in Climate Change Conditions: Pr... | 2024-11-13 |